Search results for "Root of unity"

showing 8 items of 8 documents

Zu einem Satz von Isaacs �ber das Casus-Irreducibilis Ph�nomen

2000

Let \(\Omega \) be a field (of characteristic 0). A prime p is called “bose” (naughty) if \(\Omega \) contains all p-th roots of unity. In this paper the theorem is proved: Let K be an admissible subfield of \(\Omega \) (i.e. for each prime p K contains all p-th roots of unity lying in \(\Omega \)), a an algebraic element of \(\Omega /K\) which is contained in a repeated radical extension of K lying in \(\Omega \). Furthermore let the normal hull L of a over K be contained in \(\Omega \). Then all prime divisors of \(\mid L : K \mid \) are naughty (and L is a repeated radical extension of K with naughty prime exponents). This result generalises a theorem of Isaacs [1] who treats the case \(…

CombinatoricsPure mathematicsRoot of unityMathematics::Number TheoryGeneral MathematicsRadical extensionField (mathematics)OmegaPrime (order theory)Algebraic elementMathematicsArchiv der Mathematik
researchProduct

Elementary Integration of Superelliptic Integrals

2021

Consider a superelliptic integral $I=\int P/(Q S^{1/k}) dx$ with $\mathbb{K}=\mathbb{Q}(\xi)$, $\xi$ a primitive $k$th root of unity, $P,Q,S\in\mathbb{K}[x]$ and $S$ has simple roots and degree coprime with $k$. Note $d$ the maximum of the degree of $P,Q,S$, $h$ the logarithmic height of the coefficients and $g$ the genus of $y^k-S(x)$. We present an algorithm which solves the elementary integration problem of $I$ generically in $O((kd)^{\omega+2g+1} h^{g+1})$ operations.

Coprime integersDegree (graph theory)LogarithmRoot of unity010102 general mathematics68W300102 computer and information sciencesIntegration problem01 natural sciencesCombinatoricsMathematics - Algebraic Geometry010201 computation theory & mathematicsSimple (abstract algebra)Genus (mathematics)FOS: Mathematics[MATH]Mathematics [math]0101 mathematicsAlgebraic Geometry (math.AG)Symbolic integrationMathematicsProceedings of the 2021 on International Symposium on Symbolic and Algebraic Computation
researchProduct

Computing generators of the tame kernel of a global function field

2006

Abstract The group K 2 of a curve C over a finite field is equal to the tame kernel of the corresponding function field. We describe two algorithms for computing generators of the tame kernel of a global function field. The first algorithm uses the transfer map and the fact that the l -torsion can easily be described if the ground field contains the l th roots of unity. The second method is inspired by an algorithm of Belabas and Gangl for computing generators of K 2 of the ring of integers in a number field. We finally give the generators of the tame kernel for some elliptic function fields.

Discrete mathematicsPure mathematicsAlgebra and Number TheoryGlobal function fieldsRoot of unityElliptic functionAlgebraic number fieldK-theoryRing of integersAlgorithmic number theoryGround fieldComputational MathematicsFinite fieldTorsion (algebra)Function fieldMathematicsJournal of Symbolic Computation
researchProduct

Evaluating Multiple Polylogarithm Values at Sixth Roots of Unity up to Weight Six

2017

We evaluate multiple polylogarithm values at sixth roots of unity up to weight six, i.e. of the form $G(a_1,\ldots,a_w;1)$ where the indices $a_i$ are equal to zero or a sixth root of unity, with $a_1\neq 1$. For $w\leq 6$, we present bases of the linear spaces generated by the real and imaginary parts of $G(a_1,\ldots,a_w;1)$ and present a table for expressing them as linear combinations of the elements of the bases.

High Energy Physics - TheoryNuclear and High Energy PhysicsPolylogarithmRoot of unityFOS: Physical sciencesFeynman graph01 natural sciencesCombinatoricsHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesFOS: Mathematicslcsh:Nuclear and particle physics. Atomic energy. RadioactivityNumber Theory (math.NT)0101 mathematicsLinear combinationMathematical PhysicsPhysicsMathematics - Number Theory010308 nuclear & particles physicsLinear space010102 general mathematicsZero (complex analysis)Mathematical Physics (math-ph)High Energy Physics - PhenomenologyHigh Energy Physics - Theory (hep-th)lcsh:QC770-798
researchProduct

The $q$-calculus for generic $q$ and $q$ a root of unity

1996

The $q$-calculus for generic $q$ is developed and related to the deformed oscillator of parameter $q^{1/2}$. By passing with care to the limit in which $q$ is a root of unity, one uncovers the full algebraic structure of ${{\cal Z}}_n$-graded fractional supersymmetry and its natural representation.

High Energy Physics - TheoryPure mathematicsRoot of unityAlgebraic structureFOS: Physical sciencesGeneral Physics and AstronomyFractional supersymmetryHigh Energy Physics - Theory (hep-th)Mathematics - Quantum AlgebraFOS: MathematicsQuantum Algebra (math.QA)Limit (mathematics)Representation (mathematics)Mathematics
researchProduct

Geometrical foundations of fractional supersymmetry

1997

A deformed $q$-calculus is developed on the basis of an algebraic structure involving graded brackets. A number operator and left and right shift operators are constructed for this algebra, and the whole structure is related to the algebra of a $q$-deformed boson. The limit of this algebra when $q$ is a $n$-th root of unity is also studied in detail. By means of a chain rule expansion, the left and right derivatives are identified with the charge $Q$ and covariant derivative $D$ encountered in ordinary/fractional supersymmetry and this leads to new results for these operators. A generalized Berezin integral and fractional superspace measure arise as a natural part of our formalism. When $q$…

PhysicsHigh Energy Physics - TheoryNuclear and High Energy PhysicsBerezin integralRoot of unityAlgebraic structureFOS: Physical sciencesAstronomy and AstrophysicsSuperspaceAtomic and Molecular Physics and OpticsCovariant derivativeFractional supersymmetryOperator (computer programming)High Energy Physics - Theory (hep-th)Mathematics - Quantum AlgebraFOS: MathematicsQuantum Algebra (math.QA)nth rootMathematical physics
researchProduct

Analytic results for planar three-loop integrals for massive form factors

2016

We use the method of differential equations to analytically evaluate all planar three-loop Feynman integrals relevant for form factor calculations involving massive particles. Our results for ninety master integrals at general $q^2$ are expressed in terms of multiple polylogarithms, and results for fiftyone master integrals at the threshold $q^2=4m^2$ are expressed in terms of multiple polylogarithms of argument one, with indices equal to zero or to a sixth root of unity.

PhysicsNuclear and High Energy PhysicsParticle physics010308 nuclear & particles physicsRoot of unityDifferential equationFeynman integralPhysicsZero (complex analysis)Form factor (quantum field theory)FOS: Physical sciences01 natural sciencesLoop (topology)High Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)PlanarPerturbative QCD0103 physical sciencesddc:530Scattering Amplitudes010306 general physicsMathematical physicsJournal of High Energy Physics
researchProduct

Irreducible characters taking root of unity values on $p$-singular elements

2010

In this paper we study finite p-solvable groups having irreducible complex characters chi in Irr(G) which take roots of unity values on the p-singular elements of G.

Pure mathematics20C15 20C20Root of unityApplied MathematicsGeneral MathematicsFOS: MathematicsGroup Theory (math.GR)Representation Theory (math.RT)Mathematics::Representation TheoryMathematics - Group TheoryMathematics - Representation TheoryMathematicsProceedings of the American Mathematical Society
researchProduct